Visualization and exploration of spatial probability density functions: a clustering-based approach
نویسندگان
چکیده
We present an interactive visualization technique for spatial probability density function data. These are datasets that represent a spatial collection of random variables, and contain a number of possible outcomes for each random variable. It is impractical to visualize all the information at each spatial location as it will quickly lead to a cluttered image. We advocate the use of hierarchical clustering as a means of summarizing the information, and also as a tool to bring out meaningful spatial structures in the datasets. For clustering, we discuss a distance function which preserves the spatial correlation present in these datasets. To create an informative visualization of the clusters, we introduce a scheme of colors and patterns to represent various statistical properties of the clusters.
منابع مشابه
Assessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories
In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...
متن کاملA density based clustering approach to distinguish between web robot and human requests to a web server
Today world's dependence on the Internet and the emerging of Web 2.0 applications is significantly increasing the requirement of web robots crawling the sites to support services and technologies. Regardless of the advantages of robots, they may occupy the bandwidth and reduce the performance of web servers. Despite a variety of researches, there is no accurate method for classifying huge data ...
متن کاملICEAGE: Interactive Clustering and Exploration of Large and High-Dimensional Geodata
The unprecedented large size and high dimensionality of existing geographic datasets make the complex patterns that potentially lurk in the data hard to ®nd. Clustering is one of the most important techniques for geographic knowledge discovery. However, existing clustering methods have two severe drawbacks for this purpose. First, spatial clustering methods focus on the speci®c characteristics ...
متن کاملA clustering approach for mineral potential mapping: A deposit-scale porphyry copper exploration targeting
This work describes a knowledge-guided clustering approach for mineral potential mapping (MPM), by which the optimum number of clusters is derived form a knowledge-driven methodology through a concentration-area (C-A) multifractal analysis. To implement the proposed approach, a case study at the North Narbaghi region in the Saveh, Markazi province of Iran, was investigated to discover porphyry ...
متن کاملAnt-Based Document Clustering and Visualization
This paper discusses the document clustering and visualization process: analyzing documents index, clustering document, and visualizing exploration. It focuses on ant-based clustering algorithm and some significant improvements. Clusterings are formed on the plane by ants walking, picking up or dropping down projected document vectors with different probability. It is shown that the similar doc...
متن کامل